新浪科技

亚马逊云服务(AWS)中国宁夏及北京区域正式上线Amazon SageMaker

199IT

关注

原标题:亚马逊云服务(AWS)中国宁夏及北京区域正式上线Amazon SageMaker

Amazon SageMaker 是一项完全托管的服务,使开发者和数据科学家能够更广泛、更成功地使用机器学习

[2020年5月12日,北京]亚马逊云服务Amazon Web Services, Inc. (AWS) 今天宣布,Amazon SageMaker在由西云数据运营的AWS中国 (宁夏) 区域和光环新网运营的AWS中国(北京)区域正式上线。Amazon SageMaker 是一项完全托管的服务,可以帮助开发者和数据科学家快速地规模化构建、训练和部署机器学习 (ML) 模型。Amazon SageMaker在中国的上线还使中国客户获得一系列新发布的工具,例如弹性Notebook、实验管理、模型自动创建、模型调试分析,以及模型概念漂移检测等强大功能,所有这些工具都封装在首个面向机器学习的集成开发环境(IDE) Amazon SageMaker Studio中。进一步了解Amazon SageMaker,请访问: https://www.amazonaws.cn/sagemaker/。

机器学习的实施是一项非常复杂的工作,涉及大量试错,并且需要专业技能。开发者和数据科学家首先必须对数据进行可视化、转换和预处理,这些数据才能变成算法可以使用的格式,用以训练模型。即使是简单的模型,企业也需要花费庞大的算力和大量的训练时间,并可能需要招聘专门的团队来管理包含多台GPU服务器的训练环境。从选择和优化算法,到调节影响模型准确性的数百万个参数,训练模型的所有阶段都需要大量的人力和猜测。然后,在应用程序中部署训练好的模型时,客户又需要另一套应用设计和分布式系统方面的专业技能。并且,随着数据集和变量数的增加,模型会过时,客户又必须一次又一次地重新训练模型,让模型从新的信息中学习和进化。所有这些工作都需要大量的专业知识,并耗费庞大的算力、数据存储和时间成本。而且,由于没有集成化的工具用于整个机器学习的工作流,机器学习模型的传统开发方式是复杂、繁复和昂贵的。

Amazon SageMaker消除了机器学习过程中各个步骤的繁重工作。通过预置的Notebook、针对PB级数据集优化的常用算法,以及自动模型调优,Amazon SageMaker大大降低了模型构建和训练的难度。并且,Amazon SageMaker显著简化和加快了模型训练过程,可以通过自动提供和管理基础设施来训练模型和运行推理。同时,AWS 最近宣布了多项重要功能和高级特性,让客户能够更轻松地构建、训练、调优和部署机器学习模型。这些功能包括:

“国内越来越多的企业正在探讨机器学习和人工智能技术带来的巨大潜力,探索如何把这些技术融入到日常应用当中。但实际上,除了少数具有专家人才和数据科学家的企业外,大部分公司还是很难应用机器学习这项技术,因此客户希望我们可以让这项技术变得更方便、更易用。”AWS全球副总裁及大中华区执行董事张文翎表示,“AWS提供了广泛、深入的机器学习和人工智能服务。Amazon SageMaker在AWS中国(宁夏)区域和AWS中国(北京)区域上线,将帮助更多中国客户去除机器学习涉及的混乱和复杂性,让他们能够胜任构建、训练和部署模型的工作,以应对新的挑战。”

全球已有数以万计的客户利用Amazon SageMaker加快机器学习部署, Autodesk、Change Healthcare、拜耳、英国航空、盖洛普、洛杉矶快船队、松下航空电子(Panasonic Avionics)、环球邮报和T-Mobile等等。中国客户如虎牙、大宇无限、嘉谊互娱、华来科技等也已选择Amazon SageMaker大规模地构建、训练和部署机器学习模型。

大宇无限是一家专门从事移动应用程序开发的公司,主要为中东、东南亚和拉丁美洲等新兴市场提供移动短视频服务。大宇无限技术副总裁刘克东表示:“在大宇无限的产品中实现视频内容的在线推荐,对我们的开发团队来说是一个巨大的挑战。构建机器学习系统的整个流程极为复杂,需要大量的开发者耗费很长的时间才有可能完成。Amazon SageMaker极大地简化了机器学习系统的构建、训练和部署流程,使我们无需构建基础设施,我们的算法工程师只需为Amazon SageMaker准备数据,仅用了三个月的时间就从零完成了整个系统的建设并承受了实际用户访问的压力。”

借助AWS提供的Amazon EC2 GPU实例和Amazon SageMaker,华来科技以优化的成本将机器学习创新融合到其智能家居、智慧安防设备和服务中。天津华来科技有限公司云业务部总监季宝平说:“在AWS上,我们可以完成算法的构建和模型训练,并且该过程完全不需要我们在本地投资昂贵的计算硬件,一切都是在云端以按需使用的方式完成。与行业通用的公开算法不同,更重要的是我们自己训练的模型在应用场景中具有更多个性化空间,并且我们对自己训练出的模型具有知识产权,这将是我们未来的核心竞争力。”

AWS合作伙伴网络 (APN) 成员对Amazon SageMaker在中国区域的上线也表示欢迎。

德勤D.Data是一个基于AWS的 PaaS (平台即服务) 平台,为企业客户提供数据分析和业务洞察。它为不同的行业和业务场景提供了各种数据建模和预测服务。德勤创新、数字化研发中心领导合伙人賴有猷评价道:“通过Amazon SageMaker,我们大大提高了算法和机器学习建模能力,提高了分析效率。Amazon SageMaker的IDE平台也帮助我们加快了开发进程。”

伊克罗德是AWS的核心级咨询合作伙伴 (APN Premier Consulting Partner),其基于AWS的解决方案极大地减少了用户的开发时间与运营费用。伊克罗德中国区副总裁桂梓捷表示:“我们运用Amazon SageMaker平台加速企业导入行业AI解决方案,如标签标注、文本分析、语意理解、预测分类、推荐系统与诈欺侦测等,针对客户实际遇到的商业问题,量身打造真正解决问题的端到端AI应用。随着Amazon SageMaker在中国区域落地,我们将会以SageMaker平台作为企业MLOps(机器学习运营)核心,协助企业构建MLOps流程,尤其在金融行业领域,帮助企业内部数据科学家与AI工程师建立、训练与部署机器学习模型。”

###

加载中...