新浪科技

一文读懂:光模块市场现状及未来

慧聪电子网

关注

原标题:一文读懂:光模块市场现状及未来 来源:面包板社区

    光模块作为一种重要的有源光器件,在发送端和接收端分别实现信号的电-光转换和光-电转换。由于通信信号的传输主要以光纤作为介质,而产生端、转发端、处理端、接收端处理的是电信号,光模块具有广泛和不断增长的市场空间。光模块的上游主要为光芯片和无源光器件,下游客户主要为电信主设备商、运营商以及互联网&云计算企业。

    光模块遵循芯片—组件(OSA)—模块的封装顺序。激光器芯片和探测器芯片通过传统的TO封装形成TOSA及ROSA,同时将配套电芯片贴装在PCB,再通过精密耦合连接光通道和光纤,最终封装成为一个完整的光模块。新兴的主要应用于短距多模的COB采用混合集成方法,通过特殊的键合焊接工艺将芯片贴装在PCB上,采用非气密性封装。

    光模块下游主要应用于电信承载网、接入网、数据中心及以太网三大场景。电信承载网和接入网同属于电信运营商市场,其中波分复用(xWDM)光模块主要用于中长距电信承载网,光互联(Opitcalinterconnects)主要用于骨干网核心网长距大容量传输,而接入网市场是运营商到用户的“最后一公里”,包括光纤到户无源光网络(FTTHPON)、无线前传(Wireless)等应用场景。数据中心及以太网市场主要包括数据中心内部互联、数据中心互联(DCI)、企业以太网(Ethernet)等场景。

    根据LightCounting预测,2018年全球光模块市场规模约60亿美元,其中电信承载网市场规模17亿美元,每年以15%的速度增长,接入网市场规模约12亿美元,年增长率约11%,而数据中心和以太网市场规模已达30亿美元,未来5年复合增长率达19%。

欧美日:行业不断并购整合,专注于高端产品和芯片研发

    全球光模块产业链分工明确,欧美日技术起步较早,专注于芯片和产品研发。中国在产业链中游优势明显:劳动力成本、市场规模以及电信设备商的扶持,我们经过多年发展已成为全球光模块制造基地,从OEM、ODM发展为多个全球市占率领先的光模块品牌。产业链分工有效利用了全球优势生产要素,并避免了重复研发,有利于全球产业链高效运转但中国难以分享上游的巨大价值。

    由于低端产品价格透明,许多海外企业无法接受过低的毛利率进而剥离光模块业务专注于芯片或保留高端产品。如剑桥科技去年5月和今年3月分别收购MacomJapan和OclaroJapan光模块资产;博创科技今年3月收购KaiamPLC业务涉及相关部分资产。

    另一方面,光通信巨头也经历了一系列并购整合,以增强对整个产业链的垂直协同,增强规模优势,提高议价能力,如去年5月和11月,Lumentum和II-VI分别宣布收购Oclaro和Finisar

中国:从全球工厂到高端智造

    工程师红利开始替代劳动力红利。中国的制造业劳动力成本相比美国的优势正在快速减弱,根据Wind和美国劳工部发布数据统计,美国制造业平均年薪/中国制造业平均年薪从2013年的8.15快速减少为2018年的5.01。而与此同时,中美IT技术人员的平均年薪在缓慢缩小,美国IT技术平均年薪/中国IT技术平均年薪由2013年的5.89减少为2018的4.46。中国的工程师红利正在替代劳动力红利成为驱动光模块行业发展的新动能。

    中国在全球价值链地位提升。长期以来我国光模块企业在上游芯片和下游主设备商的“夹击”下利润空间被严重限定,但长期坚持研发正在助力国内光模块企业向价值链更高的高端光模块和光电芯片领域渗透。我们以电信光模块为主业的光迅科技、昂纳科技、新易盛作为样本,三家企业研发支出总额2014-2018保持着年均20%的增长速度,研发支出占营收比例保持在10%以上。而从三家企业的收入合计占运营商资本开支的比例来看,2014-2018增长了1.79pct。光模块企业通过研发投入带动产品竞争力不断增强,有望在全球产业链中分享更多的价值。

上游芯片仍是短板,自主可控必将加速

 光芯片和电芯片是光模块的核心部件,成本占比最高

    光芯片是光模块中完成光电信号转换的直接芯片,又分为激光器芯片和探测器芯片。激光器芯片发光基于激光的受激辐射原理,按发光类型,分为面发射与边发射:面发射类型主要为VCSEL(垂直腔面发射激光器),适用于短距多模场景;边发射类型主要为FP(法布里-珀罗激光器)、DFB(分布式反馈激光器)以及EML(电吸收调制激光器),FP适用于10G以下中短距场景,DFB及EML适用于中长距高速率场景。EML通过在DFB的基础上增加电吸收片(EAM)作为外调制器,目前是实现50G及以上单通道速率的主要光源。探测器芯片主要有PIN(PN二极管探测器)和APD(雪崩二极管探测器)两种类型,前者灵敏度相对较低,应用于中短距,后者灵敏度高,应用于中长距。

    电芯片一方面实现对光芯片工作的配套支撑,如LD(激光驱动器)、TIA(跨阻放大器)、CDR(时钟和数据恢复电路),一方面实现电信号的功率调节,如MA(主放),另一方面实现一些复杂的数字信号处理,如调制、相干信号控制、串并/并串转换等。还有一些光模块拥有DDM(数字诊断功能),相应的带有MCU和EEPROM。电芯片通常配套使用,主流芯片厂商一般都会推出针对某种型号光模块的套片产品。

    发射端,电信号通过CDR、LD等信号处理芯片完成信号内调制或外调制,驱动激光器芯片完成电光转换;接收端,光信号通过探测器芯片转化为电脉冲,然后通过TIA、MA等功率处理芯片调幅,最终输出终端可以处理的连续电信号。光芯片和电芯片配合工作实现了对传输速率、消光比、发射光功率等主要性能指标的实现,是决定光模块性能表现的最重要器件。通过眼图分析可以衡量光模块的主要性能指标,包括幅度稳定度、码间干扰、消光比、抖动过冲和噪声等。

    光模块芯片具有极高的技术壁垒和复杂的工艺流程,因而是光模块BOM成本结构中占比最大的部分。光芯片的成本占比通常在40%-60%,电芯片的成本占比通常在10%-30%之间,越高速、高端的光模块电芯片成本占比越高,但规模优势可以增加采购的议价能力。

高速芯片国产率亟待提升,芯片产业链薄弱环节需逐步解决

    高速芯片国产化率亟待提升。光芯片方面,我国在10G及以下光芯片具备替代的能力,但仍有很大市场空间。商业级25G的DFB、EML、APD、PIN部分厂商已在客户验证阶段,成本降低和良率提升仍有很长的路要走。50GEML、窄线宽波长可调激光器芯片、100G及以上相干集成光收发芯片等面向5G的关键芯片几乎全部由国外厂商提供,海思、光迅等研发走在前列的企业目标基本是实现自给。电芯片方面,我国25G/100G多模光模块配套IC基本实现替代能力,但产能远远不足。

上一页1234下一页

在本页显示剩余内容

加载中...